广州供电段电力线路工工长胡永机与同事吴伟志正在对灯具进行专项维护作业 欧阳文强 摄
在20米的高空上,行走在长100余米、宽不足1.5米的镂空钢筋灯桥,并在上面进行巡视和维护灯具,是常人难以完成的工作。在这座空中连廊上,起风时,桥面会轻微地晃动,每一步都比在地面上走得要艰难,加之近期春运期间天气较为湿冷,灯桥上的风吹到脸上仿佛刀刮一般刺痛。每当走动时,灯桥晃动就更为明显,但是身经百战的电力工长李志贤和技术能手吴伟志在上面却如履平地。
“第一次站在灯桥时,我其实挺害怕的,脚迟迟不敢迈出第一步。李工长鼓励我别往下看。当时我看他在前面如同走在平地上,才鼓起勇气,敢慢慢迈出一小步。现在次数多了,也就不怕了。”吴伟志腼腆地说道。
吴伟志正爬上20米高的灯桥 欧阳文强 摄在走到指定位置后,工长胡永机便熟练地打好安全带,从袋子中掏出工具开始检查,“广州南动车所站场这里4个灯桥,上面的每一盏灯我们都要认真检查,确保安全。”检查完一处,他就拉开工具包的拉链,小心翼翼地将扳手装进去。因为灯桥的走廊由一根根钢筋组成,完全是镂空的,因此绝不能掉落任何物品。工作时必须全神贯注,丝毫马虎不得。
灯桥是站场作业人员夜间的“眼睛”,如果灯不亮,作业人员就无法看清站场,检修、调车等作业将难以进行,列车就难以准时安全出行。
“拆除或安装一盏灯要不停地旋拧螺丝上百次。这座灯桥除了维修坏了的灯之外,我们还要对其他能正常照明的灯进行检查,这样下来,其实工作量也不小,对体力也是一种考验。”陈桂平边拧螺丝边说道。在彻骨寒风下检查了3个多小时,胡永机和陈桂平才完成了整座灯桥的检修,脱下手套擦了擦额头上的汗,才发现手都冻红了。稍微暖了一下手后,两人又赶紧戴上手套,爬下20米高的灯桥,往下一座灯桥走去。
广州南动车所站场灯桥 欧阳文强 摄陈桂平说:“今年是我参加工作的第7个春运,这些灯桥的检修,虽然再平常不过,但绝不能放松警惕。”
春运期间,他们要定期登上20米高、100多米长的灯桥开展全面排查,确保灯具保持常亮。这些“两柱一跨”的钢结构式灯桥,主要为广州南动车所、江村站场等高、普铁枢纽地区列车存放的大型站场提供有效照明。
“这些地方通常比较偏远,少了城市的繁华喧嚣,却多了列车安全驶过的轰鸣声,守护好电力设备安全,就是为列车平安出行提供最好的服务和支撑。”李志贤在巡视灯桥时说道。(完)
利用光力系统实现非互易频率转换****** 记者10日从中国科学技术大学获悉,该校郭光灿院士团队的董春华教授研究组通过光辐射压力实现两光学模式和两机械模式间的相互作用,进而实现了任意两模式间全光控的非互易频率转换。该研究成果日前发表在国际期刊《物理评论快报》上。 光学和声学非互易器件在构建基于光子和声子的信息处理和传感系统中是非常重要的元器件。虽然磁诱导非互易已广泛应用于分立光学非互易器件,但在器件集成化方面仍面临挑战。同时,磁诱导声学非互易由于效应较弱,也难以实现集成的声学非互易器件。腔光力学系统是实现无磁非互易的有效系统之一,在之前的工作中研究组已经演示了基于腔光力相互作用的无磁光学环形器。 在前期工作基础上,研究组研究了单个微腔中光子和声子的非互易转换。利用两个光学模式和两个机械模式通过光力相互作用构成闭环四模元格,这四个模式具有完全不同的频率,分别为388THz、309THz、117MHz和79MHz。研究组演示了四个模式中任意两个节点之间的非互易转换,包括声子—声子(MHz—MHz)、光子—光子(THz—THz)和光子—声子(THz—MHz)的非互易转换。该非互易转换的原理正是利用光力微腔中的多个模式构建人工规范场,通过控制光的相位实现规范场中几何相位,从而可以实现全光控制的灵活的非互易转换。接下来,在该元格中引入第三个机械模式,实现了声子环形器,该环形器的方向受两个独立的控制光相位决定。 据悉,这一研究结果可以推广到微腔内其他的光学模式和机械模式,构建更多节点的混合网络,实现信息在混合网络中的单向传输,这在通讯和信息处理领域具有潜在的应用,特别是在光学波分复用网络和用于连接不同频率下工作的分立量子系统。(记者吴长锋) (文图:赵筱尘 巫邓炎) [责编:天天中] 阅读剩余全文() |